Tampilkan postingan dengan label Fisika. Tampilkan semua postingan
Tampilkan postingan dengan label Fisika. Tampilkan semua postingan

Rabu, 16 November 2016

Bunyi Hukum Newton (1, 2, 3 ), Rumus serta Contoh di Kehidupan Sehari-hari


Hukum Newton adalah Tiga rumusan dasar dalam fisika yang menjelaskan dan memberikan gambaran tentang kaitan gaya yang bekerja dengan gerak yang terjadi pada suatu benda. Kata Newton berasal dari ilmuan yang menemukan dan memperkenalkannya yaitu Sir Isaac Newton, Ketiga hukum tersebut dirangkum dalam karyanya Philosophiae Naturalis Principia Mathematica. Hukum Newton dijelaskan untuk meneliti dan mengamati gerak dalam berbagai mekanisme maupun sistem.

Bunyi Hukum Newton (1, 2, 3 ), Rumus & Contoh di Kehidupan Sehari-hari

a. Bunyi Hukum Newton 1 (I)
Bunyi: "Jika resultan gaya yang bekerja pada benda yang sama dengan nol, maka benda yang mula-mula diam akan tetap diam. Benda yang mula-mula bergerak lurus beraturan akan tetap lurus beraturan dengan kecepatan tetap". 

Rumus Hukum Newton 1 (I): 
                        
Contoh Hukum Newton 1 (I) dalam Kehidupan Sehari-hari 
  • Saat mobil bergerak cepat di rem mendapak penumpang akan serasa terdorong kedepan
  • Mobil yang anda naiki setelah direm mendadak, lalu mobil tiba-tiba bergerak kedepan, maka anda akan terdorong ke belakang
  • Koin yang diatas kertas yang diletakkan di meja akan tetap, jika kertas ditarik cepat
b. Bunyi Hukum Newton 2 (II)
Bunyi: "Percepatan dari suatu benda akan sebanding dengan jumlah gaya (resultan gaya) yang bekerja pada benda tersebut dan berbanding terbalik dengan massanya". 

Rumus Hukum Newton 2 (II): 

             

Contoh Hukum Newton 2 (II) dalam Kehidupan Sehari-hari
  • Gaya yang ditimbulkan ketika menarik gerobak yang penuh dengan padi, untuk dipindahkan kerumah dari sawah 
  • Jika di tarik dengan gaya yang sama mobil-mobil yang masasanya lebih besar (ada beban) percepatannya lebih kecil, sedangkan pada mobil-mobilan yang sama (massa sama) jika ditarik dengan gaya yang lebih besar akan mengalami percepatan yang lebih besar pula
c. Bunyi Hukum Newton 3 (III) 
Bunyi: "Jika suatu benda memberikan gaya pada benda lain maka benda yang dikenai gaya akan memberikan gaya yang besarnya sama dengan gaya yang di terima dari benda pertama tetapi arahnya berlawanan". 

Rumus Hukum Newton 3 (III): 
1. Gaya Gesek 

              Bunyi Hukum Newton (1, 2, 3 ), Rumus & Contoh di Kehidupan Sehari-Hari

2. Gaya Berat 

             Bunyi Hukum Newton (1, 2, 3 ), Rumus & Contoh di Kehidupan Sehari-Hari

3. Berat Sejenis 

             Bunyi Hukum Newton (1, 2, 3 ), Rumus & Contoh di Kehidupan Sehari-Hari

Contoh Hukum Newton 3 (III) dalam Kehidupan Sehari-hari
Contoh umum: adanya gaya gravitasi, Peristiwa gaya magnet, gaya listrik
  • Duduk di atas kursi berat badan tubuh mendorong kursi ke bawah sedangkan kursi menahan (mendorong) badan ke atas. 
  • Jika seseorang memakai sepatu roda dan mendorong dinding, maka dinding akan mendorong sebesar sama dengan gaya yang kamu keluarkan tetapi arahnya berlawanan, sehingga orang tersebut terdorong menjauhi dinding
Demikianlah artikel singkat mengenai Bunyi Hukum Newton (1, 2, 3 ), Rumus serta Contohnya di Kehidupan Sehari-hari. Semoga bermanfaat bagi kita semua. sekian dan terima kasih.

Minggu, 06 November 2016

Pengertian Besaran Pokok dan Besaran Turun

Mengukur merupakan kegiatan sederhana tetapi sangat penting dalam kehidupan kita. Mengukur adalah membandingkan sesuatu besaran dengan besaran lain sejenis yang dipakai sebagai satuan standar. Kegiatan pengukuran menggunakan alat-alat ukur akan menghasilkan data yang bersifat kuantitatif, misalnya mengukur panjang dengan mistar atau mengukur massa dengan neraca. Bagaimana menyatakan hasil pengukuran tersebut. Di dalam fisika besaran dapat diartikan sebagai sesuatu yang dapat diukur atau dihitung dan mempunyai nilai (besar) yang dinyatakan dengan angka dan satuan. Contoh besaran: kecepatan, massa, panjang.
Besaran yang digunakan dalam fisika dibedakan menjadi dua, yaitu besaran pokok (Base Quantities) dan besaran turunan (Derived Quantities).


1. Besaran Pokok
Besaran yang biasa digunakan dalam fisika pada prinsipnya ada 7 besaran yang disebut besaran pokok. Besaran pokok adalah suatu besaran yang satuannya didefinisikan tersendiri atau besaran yang satuannya tidak dijabarkan dan satuan besaran lain. Besaran pokok pertama kali dicetuskan pada tahun 1960, yaitu pada waktu konferensi ilmuwan di Paris.
Besaran pokok meliputi besaran panjang, massa, waktu, kuat arus listrik, suhu, intensitas cahaya, dan jumlah zat, ditambah 2 besaran tambahan, yaitu sudut bidang dan sudut ruang. Dalam penetapan besaran pokok, ditentukan juga satuan besaran pokok yang disebut satuan pokok atau satuan dasar. Penetapan tersebut bertujuan agar tidak menimbulkan kesulitan-kesulitan dan dapat diterima oleh semua orang.

No
Nama Besaran
Satuan
Singkatan
1.
Panjang
Meter
M
2.
Massa
Kilogram
Kg
3.
Waktu
Sekon
s
4.
Suhu
Kelvin
K
5.
Kuat Arus Listrik
Ampere
A
6.
Jumlah zat
Mol
Mol
7.
Intensitas cahaya
Kandela
cd


Berikut Pembahasan Besaran-besaran pokok antaralain.

a. Panjang
Dalam Sistem (satuan) Internasional (SI) satuan panjang dinyatakan dalam meter. Mula-mula satu meter standar ditetapkan sebagai 1/10 juta jarak dan garis khatulistiwa ke kutub utara Bumi yang melewati kota Paris, Prancis. Meter standar ini menghasilkan data yang kurang akurat sehingga kemudian diganti dengan menggunakan batang platina-iridium.
Dalam hal ini, satu meter adalah jarak dua goresan pada batang platina iridium yang disimpan di International Bureau of Weights and Measures (Lembaga Internasional tentang Berat dan Pengukuran) di Sevres, Prancis. Meter standar yang digunakan sebagal alat ukur panjang setiap saat timbang dan diteliti. Seining dengan perkembangan ilmu pengetahuan dan teknologl, maka pada pertemuan ke-1 1 Konferensi Umum Berat dan Ukuran ditetapkan suatu standar atomik untuk panjang. Satu meter standar didefinisikan sebagai 1 650 763,73 kali panjang gelombang dan cahaya jingga-menah yang dipancankan oleh atom-atom gas kripton-86 (Kr—86) di dalam tabung ucutan cahaya. Selanjutnya, pada November 1983 meter standar berubah lagi. Dan hasil Konferensi Umum tentang Berat dan Pengukuran ke-17, meter
Standar ditetapkan berdasarkan jarak yang ditempuh cahaya dalam ruang hampa udara (vakum). Satu meter standar ni sama dengan jarak yang ditempuh cahaya dalam ruang hampa udara selama 229 792 458 sekon.

Konversi Satuan Panjang
Satuan panjang dalam SI dinyatakan dalam meter (m), namun demikian dalam kehidupan sehari-hari dikenal satuan-satuan panjang yang lain seperti kilometer, inci, sentimeter, dan milimeter. Hubungan antara satuan-satuan tersebut adalah sebagai berikut.
1 km = 1000 m 1 cm = 10 mm
1 m = 100 cm 1 inci = 2,54 cm

b. Massa
Dalam kehidupan sehari-hari massa benda dikenal sebagai “berat benda”. Jika ada seseorang menanyakan berapa berat satu karung pupuk urea berukuran standar? Maka jawabannya adalah “50 kilogram”. Secara fisika jawaban tersebut tidak tepat karena kilogram bukan satuan berat, melainkan satuan massa. Dalam SI satuan berat dinyatakan dalam newton. Massa dan berat merupakan dua besaran yang berbeda. Oleh karena itu, mulai saat mi kamu harus dapat membedakan antara pengertian berat dan massa sebuah benda.
Massa dan berat benda merupakan dua besaran yang berbeda. Massa sebuah benda menyatakan jumlah zat atau materi yang terkandung dalam benda, sedangkan berat benda merupakan gaya tarik Bumi yang dialami benda tersebut,Sebuah benda di tempat mana pun massanya selalu tetap, sedangkan nilai berat benda bergantung pada gaya gravitasi Bumi. Semakin dekat dengan kutub-kutub Bumi, berat benda semakin besar karena gaya tank Bumi terhadap benda itu semakin besar. Dalam SI, satuan massa benda dinyatakan dalam kilogram, sedangkan satuan berat benda dinyatakan dalam newton.
Pada mulanya, satu kilogram standar didefinisikan sebagai massa sebuah silinder platina-iridium yang disimpan di sevres dekat prancis, Prancis Pada Perkembanga selanjutnya, satu kilogram standar ditetakan berdasarkan massa 1 liter air murni pada suhu 4 derajat celsius

Konversi satuan massa
Satuan massa dalam SI dinyatakan dalam kilogram. Satuan massa yang lain dalam kehidupan sehari-hari adalah to, kuintal,ons, gram, dan miligram. Hubungan antarsatuan massa tersebut adalah sebagai berikut. 

1 ton = 10 kuintal
1 kuintal = 100 kg
1 kg = 1000 g
1 ons = 100 g
1 g = 1000 mg

c. Waktu 
Satu sekon standar mula-mula didefinisikan sebagai 1/86400 hari. Waktu satu hari = 24 jam , 1 jam = 60 menit, dan 1 menit = 60 sekon, sehingga satu hari = 24 x 60 x 60 sekon = 86 400 sekon. Selanjutnya, definisi satu sekon standar ini diganti karena secara ilmiah dianggap kurang akurat. Misalnya, Iamanya putaran Bumi tidak tetap sehingga satu sekon standar nilainya juga tidak selalu tetap. Kemudian, definisi satu sekon standar diganti berdasarkan getaran atom sesium-1 33. Satu sekon sama dengan waktu yang diperlukan oleh atom sesium-133 untuk bergetar sebanyak 9 192 631 770 kali dalam transisi antara dua tingkat energi. Selain satuan sekon atau detik, satuan waktu yang digunakan dalam kehidupan sehari-hari antara lain: menit, jam, han, minggu, dan tahun. 
 
d. Suhu
Suhu sangat erat hubungannya dengan panas. Di dalam masyarakat kita, kadang-kadang pengertian suhu dan panas tidak dibedakan. Jika seseorang menanyakan panasnya berapa derajat, maka orang yang ditanya kadang-kadang menjawab 37 derajat. Jawaban ini tidak benar karena suhu dan panas adalah dua hal yang berbeda. Panas merupakan salah satu bentuk energi, sedangkan suhu merupakan derajat panas suatu benda. Suhu suatu benda diukur dengan alat termometer.
Termometer yang sering kita jumpai dalam kehidupan sehari-hari adalah termometer raksa dan termometer alkohol. Kedua termometer ini masing-masing memiliki kelebihan dan kelemahan. Termometer raksa memiliki kelebihan yaitu dapat mengukur suhu benda hingga di atas 100°C, sedangkan kelebihan termometer alkohol adalah dapat mengukur benda yang suhunya rendah hingga 72°C. Termometer alkohol dan raksa prinsip kerjanya berdasarkan sifat termometrik zat cair. Alkohol atau raksa memuai atau menyusut ketika dihubungkan dengan benda yang akan diukur suhunya. 
Termometer raksa dan termometer alkohol dapat kamu jumpai di laboratorium sekolah. Termometer raksa juga digunakan pada termometer suhu badan yang digunakan oleh para dokter dan perawat. Pada saat ini, terdapat pula termometer digital. Termometer ini pada saat digunakan dapat menunjukkan suhu benda yang diukur suhunya dengan angka melalui layar termometer tersebut. Dengan demikian, termometer digital memberikan hasil yang lebih akurat.
Dalam kehidupan sehari-hari satuan suhu dinyatakan dalam derajat Celsius (°C), namun demikian dalam SI satuan suhu dinyatakan dalam Kelvin (K). Pada suhu kamar dan tekanan 1 atmosfer, es mencair pada suhu 273 K, sedangkan air mendidih pada suhu 373 K. Hubungan antara satuan derajat Celsius dengan satuan Kelvin dapat dinyatakan dengan rumus:

T = (t + 273) K

dengan: T = suhu dalam Kelvin (K)
t = suhu dalam derajat Celsius (°C)


2. Besaran Turunan
Besaran turunan merupakan suatu besaran yang didapatkan dan penurunan atau penjabaran besaran  pokok. Dalam penjabarannya, besaran turunan dapat diturunkan dan satu atau lebih besaran pokok.
Berikut Pembahasan Besaran turunan antaralain

a. Luas
Secara matematis, luas dinyatakan dengan simbol L. Luas suatu benda dapat ditentukan dengan rumus:
L=pxl
Satuan luas      = satuan panjang x satuan lebar
= satuan panjang x satuan panjang
= m x m = m2
Hal ini menunjukkan bahwa luas merupakan besaran turunan dan besaran pokok panjang. Satuan luas yang kita kenal dalam kehidupan sehari-hari antara lain: hektar, kilometer persegi (km2), meter persegi (m2), sentimeter persegi (cm2), dan milimeter persegi (mm2). Hubungan antarsatuan tersebut adalah sebagai berikut.
1 hektar               = 10 000 m2
1 are                      = 100 m2
1 km2                    = 106 m2
1 m2                      =104cm2
1m2                       =106mm2
b. Volume
Untuk mengetahui besaran turunan volume, kamu dapat memilih salah satu bangun ruang, misalnya sebuah kubus. Volume kubus dapat dihitung dengan menggunakan rumus:

V = sisi x SiSi x SiSi
Satuan volume = satuan panjang x satuan panjang x satuan panjang
= meter x meter x meter
= m x m x m = m3
Hal ini berarti volume merupakan besaran tununan dan besaran pokok panjang. Selain meter kubik, satuan volume yang kita kenal dalam kehidupan sehari-hari adalah liter (L) dan sentimeter kubik (cc). Hubungan antarsatuan volume tersebut adalah sebagal berikut.
1 liter     = 1 dm3
1 cc         = 1 sentimeter kubik = 1 cm3
1 dm3    = 1 x 10 cm3 = 1000 cm3 = 1000 cc
atau
1 liter = 1000 cc
c. Berat
at suatu benda merupakan hash kali antara massa dengan gravitasi bumi. Secara matematis dapat ditulis:
w=mxg
Berat                     = massa x gravitasi Bumi
satuan berat          = satuan massa benda x satuan gravitasi Bumi
                               = kg x m/S2
Dengan demikian, besaran berat diturunkan dan besaran pokok massa (yang memiliki satuan kilogram “kg”), panjang (yang memiliki satuan meter “m”), dan waktu (yang memiliki satuan sekon “s”).

d Gaya
Pengertian gaya dalam fisika tidak sama dengan pengertian gaya dalam kehidupan sehari-hari. Gaya yang diberikan pada suatu benda dapat menyebabkan benda tersebut dan diam menjadi bergerak, dan bergerak menjadi diam, berubah arah gerak, atau berubah bentuk. Gaya dapat ditentukan dengan menggunakan rumus:
F = m x a
Satuan gaya      = satuan massa x satuan percepatan
  =kg x m/s2
Saatuan gaya sama dengan satuan berat, sehingga besaran gaya juga diturunkan dan besaran pokok massa, panjang, dan waktu.

e. Massa Jenis
Massa jenis suatu benda merupakan hasil bagi antara massa dan vumenya. Secara matematis massa jenis dapat ditentukan dengan
rumus:
p = m/v

Massa jenis benda        = massa benda
                                          volume benda

Satuan massa jenis       = satuan massa   = kg
      satuan volume    m3

Penjelasan|Pengertian Besaran Pokok dan Besaran TurunPenjelasan|Pengertian Besaran Pokok dan Besaran Turun

Jadi, massa jenis merupakan turunan dan besaran pokok massa (yang memiliki satuan kilogram “kg”) dan besaran pokok panjang (yang memiliki satuan meter “m”).

Sekian artikel singkat tentang besaran pokok dan turunan. semoga bermanfaat bagi kita semua. sekian dan terima kasih.

Pustaka :
Ipa Terpadu/Sri rahmini.dkk, Editor : Yuni Winarti, Semarang : Aneka Ilmu, 2007 ; 3 jilid.
Ipa terpadu/hal :4-11, Penerbit : Erlangga, Penulis : Eka Purjiyanta, M.Pd, Percetakan : PT. Gelora Aksara Pratama











Senin, 15 Agustus 2016

Pengertian Umum Konduksi, Konveksi dan Radiasi

Secara umum Pengertian Konveksi adalah perpindahan kalor dengan zat penghantar disertai dengan adanya perpindahan bagian-bagian zat itu dan Pengertian Konduksi adalah perpindahan kalor dengan zat penghantar yang tanpa disertai perpindahan bagian-bagian zat itu. Sedangkan Pengertian Radiasi adalah perpindahan kalor tanpa membutuhkan zat perantara. 

Konveksi 
Umumnya zat penghantar yang digunakan adalah berupa zat cair dan gas. Kalor yang berpindah karena adanya aliran zat dipanaskan merupakan akibat dari perbedaan massa jenis atau berat jenis. Massa jenis bagian yang dipanaskan lebih kecil dibandingkan dengan massa jenis bagian yang tidak dipanaskan. Contoh Konveksi ialah memanaskan air menggunakan panci sampai mendidih. Peristiwa sehari-hari yang berhubungan dengan konveksi kalor adalah terjadinya angin darat dan angin kalor.

Konduksi 
Perpindahan kalor dengan menggunakan cara konduksi, umumnya terjadi pada zat padat. Zat yang dapat menghantarkan kalor dengan sempurna disebut dengan konduktor, misalnya pada berbagai jenis logam. Sedangkan penghantar logam yang buruk disebut dengan isolator yang terdiri dari benda-benda non logam. Contoh Konduksi ialah memanaskan sebatang besi dengan api. Jika salah satu ujung dipanaskan dan ujung yang satunya dipegang, maka semakin lama ujung yang dipegang akan semakin panas. Jadi, dapat dikatakan bahwa kalor (panas) dapat berpindah dari ujung yang satu ke ujung yang dipegang jika dipanaskan. 

Radiasi
Pancaran kalor yang hanya terjadi di dalam gas atau pada ruang hampa, seperti penghantaran panas matahari ke bumi dengan ruang hampa udara. Untuk mengetahui adanya pancaran kalor, alat yang digunakan adalah termoskop. Termoskop diferensial digunakan dalam menyelidiki sifat pancaran diberbagai permukaan. Contoh Radiasi adalah perpindahan panas dari cahaya matahari ke bumi. Radiasi kalor dapat terjadi jika lampu pijar listrik sedang menyala dan api unggun sedang menyala. Dimana disaat kita berada di dekat api unggun, tubuh akan merasa hangat, hal ini terjadi karena terdapat radiasi kalor yang dipancarkan api unggun.


Demikian artikel singkat tentang Pengertian Konduksi, Konveksi dan Radiasi. Semoga bermanfaat bagi kita semua. Sekian dan terima kasih. 

Senin, 30 Mei 2016

Bagaimana Cara Menghitung Jangka Sorong dengan Mudah

Jangka sorong dapat digunakan dengan mudah dalam menghitung panjang suatu benda. Jangka sorong adalah salah satu alat ukur dari besaran pokok panjang. Jangko sorong memiliki bentuk yang mirip kunci inggris dengan rahang yang dapat digeser. Jangka sorong memiliki ketelitian hingga 0,1 mm. Cara menghitung atau menggunakan jangka sorong merupakan pelajaran di kelas x dan di kelas 3 sma dan bagi teman-teman yang sedang atau belum mempelajarinya di bangku sekolah lebih baik anda cepat-cepat untuk mengetahui agar anda terdepan di sekolah. 

Bagian-Bagian Jangka Sorong 
Cara Menghitung Jangka Sorong dengan Mudah
Fungsi Jangka Sorong 
  • Untuk mengukur panjang suatu benda dengan ketelitian 0,1 mm (rahang tetap dan rahang geser bawah)
  • Rahang tetap dan rahang geser atas, untuk mengukur diameter benda yang sangat kecil misalnya cincin, pipa, dll 
  • Tangkai ukur dibagian bawah, untuk mengukur kedalaman misalnya kedalaman tabung, lubang kecul, atau perbedaan tinggi yang kecil. 
Tata Cara Menggunakan Jangka Sorong 
Berikut cara dalam menggunakan jangka sorong yang diikuti dalam beberapa langkah antara lain sebagai berikut,..
1. Awal persiapan, kendurkan baut pengunci dan geser rahang geser untuk menguji apakah rahang geser bekerja dengan baik. Jangan ketika rahang tertutup harus dalam keadaan atau menunjukkan angka nol. Jika tidak, atur ke angka nol.
2. Selanjutnya, membersihkan permukaan benda dan permukaan rahang untuk tidak ada benda yang menempel yang bisa menyebabkan keselahan pengukuran.
3. Tutup rahang sampai mengapit benda yang diukur. Tentukan posisi benda sesuai pengukuran yang diambil. Selanjutnya tinggal membaca skalanya.

Cara Menggunakan Jangka Sorong untuk Menghitung dan Mengukur Diamater
  • Cara menggunakannya adalah dengan rapatkan rahang atas lalu ditempatkan benda yang ingin diukur diameternya. Taring rahang geser sampai kedua rahang menempek dan menekan bagian dalam benda. Pastikan bahwa dinding bagian dalam benda tegak lurus dengan skala, maksudnya benda jangan sampai lurung. 
Cara Menggunakan Jangka Sorong untuk Mengukur Kedalaman
  • Cara menggunakan jangka sorong untuk menghitung/mengukur kedalaman adalah dengan menempatkan benda yang ingin diukur kedalamannya pada tangkai ukur. Taring rahang geser sampai dengan menyentuk permukaan dalam (dasar lubang). Usahakan agar benda yang diukur kedalamannya dalam keadaan statis (tidak bergeser). 
Cara Membaca Jangka Sorong 
  • Lihat skala utama, lihat nilai yang terukur lurus dengan angka nol di skala nonius. Bisa menunjukkan posisi berhimpit dengan garis skala utama bisa juga tidak. Jika tidak, gunakan nilai skala utama yang terdekat di kirinya. Di tahap ini anda akan mendapatkan ketelitian sampai 1 mm. 
  • Lihat skala nonius, carilah angka di skala nonius yang berhimpit dengan garis di skala utama. Pengukuran ini mempunyai ketelitian hingga 0,1 mm. 
  • Jumlahkan

Contoh Soal 1 Menghitung Jangka Sorong: 

Cara Menghitung Jangka Sorong dengan Mudah

Contoh Soal 2 Menghitung Jangka Sorong: 

Cara Menghitung Jangka Sorong dengan Mudah

Contoh Soal 3 Menghitung Jangka Sorong: 

Cara Menghitung Jangka Sorong dengan Mudah
Demikianlah artikel singkat mengenai bagaimana Cara Menghitung Jangka Sorong dengan Mudah. Semoga bermanfaat bagi kita semua. Sekian dan terima kasih.